7 Analysis Pipeline
The DCC’s analysis pipeline is hosted on github: https://github.com/UW-GAC/analysis_pipeline
7.1 Running on a local cluster
To run a burden test on our local SGE cluster, first we create a config file and call it assoc_window_burden.config
:
out_prefix "test"
gds_file "testdata/1KG_phase3_subset_chr .gds"
phenotype_file "testdata/1KG_phase3_subset_annot.RData"
pcrelate_file "testdata/round2_pcrelate.gds"
pca_file "testdata/round2_pcair.RData"
sample_include_file "testdata/sample_include.RData"
variant_include_file "testdata/variant_include_chr .RData"
outcome outcome
covars "sex"
n_pcs 4
alt_freq_max "0.1"
test "burden"
test_type "score"
We will use the python script assoc.py
to submit all jobs. First we look at the available options:
setenv PIPELINE /projects/topmed/working_code/analysis_pipeline_2.0.1
$PIPELINE/assoc.py --help
Let’s run a sliding window test on chromosomes 1-10. We will also specify the cluster type, although UW_Cluster is actually the default. The cluster file is a JSON file that can override default values for the cluster configuration. In this case, we are changing the memory requirements for each job to only reserve a small amount of memory on each cluster node. The last argument is our config file.
First, we print the commands that will be be run without actually submitting jobs:
$PIPELINE/assoc.py \
--chromosomes 1-10 \
--cluster_type UW_Cluster \
--cluster_file test_cluster_cfg.json \
--print_only \
window \
testdata/assoc_window_burden.config
The default segment length is 10,000 kb, but we can change that to 50,000 kb when we submit:
$PIPELINE/assoc.py \
--chromosomes 1-10 \
--cluster_type UW_Cluster \
--cluster_file test_cluster_cfg.json \
--segment_length 50000 \
window \
testdata/assoc_window_burden.config
We can use the qstat
command to check the status of our jobs.
7.2 Running on AWS Batch
To run a burden test on AWS Batch, we do the following general steps:
- Log into the the docker AMI instance
- Download the docker helper functions
- cd to a working directory on our NFS volume
- Create the configuration file
assoc_window_burden.config
- Execute the python helper function to run the docker image
- Optionally execute the association pipeline specifying the AWS Batch service to print out the commands (not running the pipeline)
- Execute the association pipeline specifying the AWS Batch service to run the pipeline
- Monitor the pipeline via the AWS Batch console
7.2.1 Log into AWS docker image
ssh into our image which is running docker. Various docker commands can be executed including running TOPMed version of R (note: TOPMed data is not part of the docker image).
ssh -i ~/.ssh/<some private key> kuraisa@52.27.98.54
[kuraisa@ip-172-255-46-100]~
_4816$ docker images
...
[kuraisa@ip-172-255-46-100]~
_4817$ docker run -it uwgac/r-topmed:dev
/# which R
...
/# R
...
> .libPaths()
...
> library(SeqArray)
...
> q()
...
/# exit
[kuraisa@ip-172-255-46-100]~
_4818$
7.2.2 Download the docker helper functions
git clone https://github.com/uw-gac/docker_helpers
alias pipeline='/home/kuraisa/docker_helpers/analysis_pipeline.py'
7.2.3 cd to working directory and create config file
cd /projects/topmed/analysts/kuraisa/workshop/burden
vi assoc_window_burden.config
...
7.2.4 Execute the python helper function to run the docker image
pipeline
7.2.5 Print out AWS commands if executing the pipeline
/usr/local/analysis_pipeline/assoc.py \
single testdata/assoc_window_burden.config \
--cluster_type AWS_Batch \
--cluster_file custom_batch.json \
--print > single_print.log 2>&1
7.2.6 Execute the pipeline
/usr/local/analysis_pipeline/assoc.py \
single testdata/assoc_window_burden.config \
--cluster_type AWS_Batch \
--cluster_file custom_batch.json > single_burden.log 2>&1
7.2.7 Monitor the jobs
From the web browser, log into the AWS account and select the Batch Services to monitor:
- Summary via Dashboard
- Job queue Optimal_topmed_testdata
- View high-level job logs
You can switch to ec2 services to monitor instances being created or running to support the various jobs.